EdX Artificial Intelligence - The course will introduce the basic ideas and techniques underlying the design of intelligent computer systems
Artificial Intelligence For Robotics - This class will teach you basic methods in Artificial Intelligence, including: probabilistic inference, planning and search, localization, tracking and control, all with a focus on robotics
Machine Learning - Basic machine learning algorithms for supervised and unsupervised learning
Deep Learning - An Introductory course to the world of Deep Learning.
Stanford Statistical Learning - Introductory course on machine learning focusing on: linear and polynomial regression, logistic regression and linear discriminant analysis; cross-validation and the bootstrap, model selection and regularization methods (ridge and lasso); nonlinear models, splines and generalized additive models; tree-based methods, random forests and boosting; support-vector machines.
Reinforcement Learning: An Introduction - This introductory textbook on reinforcement learning is targeted toward engineers and scientists in artificial intelligence, operations research, neural networks, and control systems, and we hope it will also be of interest to psychologists and neuroscientists.
The Cambridge Handbook Of Artificial Intelligence - Written for non-specialists, it covers the discipline's foundations, major theories, and principal research areas, plus related topics such as artificial life
Artificial Intelligence: A New Synthesis - Beginning with elementary reactive agents, Nilsson gradually increases their cognitive horsepower to illustrate the most important and lasting ideas in AI
On Intelligence - Hawkins develops a powerful theory of how the human brain works, explaining why computers are not intelligent and how, based on this new theory, we can finally build intelligent machines. Also audio version available from audible.com
How To Create A Mind - Kurzweil discusses how the brain works, how the mind emerges, brain-computer interfaces, and the implications of vastly increasing the powers of our intelligence to address the world’s problems
Deep Learning - Goodfellow, Bengio and Courville's introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives.
The Elements of Statistical Learning: Data Mining, Inference, and Prediction - Hastie and Tibshirani cover a broad range of topics, from supervised learning (prediction) to unsupervised learning including neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book.
Programming
Prolog Programming For Artificial Intelligence - This best-selling guide to Prolog and Artificial Intelligence concentrates on the art of using the basic mechanisms of Prolog to solve interesting AI problems.
Super Intelligence - Superintelligence asks the questions: What happens when machines surpass humans in general intelligence. A really great book.
Our Final Invention: Artificial Intelligence And The End Of The Human Era - Our Final Invention explores the perils of the heedless pursuit of advanced AI. Until now, human intelligence has had no rival. Can we coexist with beings whose intelligence dwarfs our own? And will they allow us to?
How to Create a Mind: The Secret of Human Thought Revealed - Ray Kurzweil, director of engineering at Google, explored the process of reverse-engineering the brain to understand precisely how it works, then applies that knowledge to create vastly intelligent machines.
Minds, Brains, And Programs - The 1980 paper by philospher John Searle that contains the famous 'Chinese Room' thought experiment. Probably the most famous attack on the notion of a Strong AI possessing a 'mind' or a 'consciousness', and interesting reading for those interested in the intersection of AI and philosophy of mind.
Gödel, Escher, Bach: An Eternal Golden Braid - Written by Douglas Hofstadter and taglined "a metaphorical fugue on minds and machines in the spirit of Lewis Carroll", this wonderful journey into the the fundamental concepts of mathematics,symmetry and intelligence won a Pulitzer Price for Non-Fiction in 1979. A major theme throughout is the emergence of meaning from seemingly 'meaningless' elements, like 1's and 0's, arranged in special patterns.
The Quest For Artificial Intelligence - This book traces the history of the subject, from the early dreams of eighteenth-century (and earlier) pioneers to the more successful work of today's AI engineers.
Stanford CS229 - Machine Learning - This course provides a broad introduction to machine learning and statistical pattern recognition.
Computers and Thought: A practical Introduction to Artificial Intelligence - The book covers computer simulation of human activities, such as problem solving and natural language understanding; computer vision; AI tools and techniques; an introduction to AI programming; symbolic and neural network models of cognition; the nature of mind and intelligence; and the social implications of AI and cognitive science.
Society of Mind - Marvin Minsky's seminal work on how our mind works. Lot of Symbolic AI concepts have been derived from this basis.
Artificial Intelligence and Molecular Biology - The current volume is an effort to bridge that range of exploration, from nucleotide to abstract concept, in contemporary AI/MB research.
Encyclopedia: Computational intelligence - Scholarpedia is a peer-reviewed open-access encyclopedia written and maintained by scholarly experts from around the world.
Ethical Artificial Intelligence - a book by Bill Hibbard that combines several peer reviewed papers and new material to analyze the issues of ethical artificial intelligence.
Code
AIMACode - Source code for "Artificial Intelligence: A Modern Approach" in Common Lisp, Java, Python. More to come.
FANN - Fast Artificial Neural Network Library, native for C
FARGonautica - Source code of Douglas Hosftadter's Fluid Concepts and Creative Analogies Ph.D. projects.
The Unreasonable Effectiveness Of Deep Learning - The Director of Facebook's AI Research, Dr. Yann LeCun gives a talk on deep convolutional neural networks and their applications to machine learning and computer vision
Neural Networks And Deep Learning - Neural networks and deep learning currently provide the best solutions to many problems in image recognition, speech recognition, and natural language processing. This book will teach you the core concepts behind neural networks and deep learning
Machine Learning: A Probabilistic Perspective - This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach
Deep Learning - Yoshua Bengio, Ian Goodfellow and Aaron Courville put together this currently free (and draft version) book on deep learning. The book is kept up-to-date and covers a wide range of topics in depth (up to and including sequence-to-sequence learning).